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A Lattice Boltzmann Equation for Waves
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We propose a lattice Boltzmann model for the wave equation. Using a lattice
Boltzmann equation and the Chapman—Enskog expansion, we get 1D and 2D wave
equations with truncation error of order two. The numerical tests show the method
can be used to simulate the wave motions.2000 Academic Press
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1. INTRODUCTION

Inrecent years, the lattice Boltzmann method (LBM) has attracted attention as an alte
tive numerical scheme for simulation of fluid flows [1-3, 10]. Unlike traditional numerice
methods which solve equations for macroscopic variables, LBM is based on the mesosc
kinetic equation for particle distribution function. The fundamental idea of the LBM is t
construct a simplified kinetic model that incorporates the essential physics of microscopi
mesoscopic processes and where the macroscopic variables obey the desired macros
equations. In the general case, time, space, and velocity are discrete on one lattice. N
this we choose the equilibrium distribution function to fit the same requirements which ¢
be obtained with the multiscale technique and the Chapman—Enskog expansion. Rece
there have been some studies about model equations using the lattice Boltzmann me
[4, 5, 9]. All of the models have a common characteristic: the macroscopic equations h
term ?T? and convention terrﬁ%, and the macroscopic quantityis conservative. In other
words, the macroscopic equation has the same %‘{er % However, the wave equation
has another form

d%u
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wherey (u) is source term. The equation above b&s/3t2, but does not have the convection
term.

It is known that the second-order wave equation can be transformed into a systen
two first-order equations; thus, consequently, we need two types of particle distribut
functions. This is a multi-composite lattice Boltzmann model, where at least a 10-bit mo
needsto be used. Inthis paper, we propose a new distribution furfgtionthe macroscopic
guantity j—lt‘ We assumef, satisfies the conservation condition. If we chod;#eas a
conservation quantity, the model has a 5-bit only. We can see the physical meaning in
wave equation: the quantil%% has an equilibrium distribution function in the mesoscopic
scale from the view of our model, but the quantitgoes not. The distribution functiof,
is a change ratio of the number of particles with time, in the mesoscopic scale, not in
number of particles.

In Ref. [6], Chen and co-workers used three steps of lattice gas automata (LGA)
simulate a linear wave equation. They introduced a delay for time in LGA, the resu
are good enough. In the present paper, we also use a lattice model. Our model has
advantages over the LGA: (1) We use an exact solution of equilibrium distribution functio
to determine the truncation errors of the scheme; the numerical results are quantity. (2)
do not need an ensemble average to get the macroscopic quantity; thus the statistical
disappear. (3) We use the standard lattice Boltzmann equation that is simpler than the sec
order differential type equation in LGA. The numerical results can show the mention
advantages. In addition in this paper we use

tHAt _ ot du
u =u + Atﬁ
to find u of the next time step.

Itis known that the second-order wave equation can be transformed into a system of
first-order equations. However, in a general system of two first-order equations, this is
easy to handle by standard LBM. Therefore, an alternative method for the lattice Boltzm:
model of the second-order wave equation needs to be developed.

2. LATTICE BOLTZMANN MODEL

2.1. The definition of macroscopic quantityConsider a 1D or 2D model; we make
discrete the velocity of particles into directions and a lattice with unit spacing is used
where each node hdmsnearest neighbors connectedlbiinks. The distribution function
f, is the probability of finding the quantitg% at timet, nodex, with velocity e,, here
a=0,1,...,b (e¢=0 is the rest particle). The particle velocityes={0, c, —c},b=2
for a one-dimensional lattice;, = {(0, 0), (c, 0), (0, ¢), (—c, 0), (0, —c)}, b= 4 for a two-
dimensional lattice. The macroscopic quan%hf‘yis defined by

au(x, t
D3 e (1)

the conservation condition is

St = D, @
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The distribution function satisfies the lattice Boltzmann equations (LBE)
fa(x+eout+l)_ fa(X,t)ZQa—i-Q;, (3)

where2, = ——[f (x,t) — £29(x, t)], fE%is the equilibrium distribution function at time
t, X; €2, is the additional term; and is the single relaxation time factor.

2.2. Aseries of lattice Boltzmann equations in different time scaldsinge as the time
step unitAt = Ax/c in the physical unitg can play the role of the Knudsen number [8].
The lattice Boltzmann equation (3) in physical units is

fa(x+8eavt+8)_ fa(xst)ZQa‘i‘Q:r (4)
The use of Taylor expansion gives

fa(X+ee,,t+e)— fu(x, t)

3 9 e2[ 9 9 12 PRI 313
= f, fy f, + 0EYH. B
S{aﬁe“”axj} +2{at+e‘“axj +6[3t+ea,a ] + O(e"). ()

Next, the Chapman—Enskog expansion [7] is applied,tander the assumption that the
mean free path is of the same ordeeoExpandingf, aroundf©

fo =0 4ef® 46212 £ 3F3 (6)

where f (@ is f2d.
To discuss changes in different time scales, introdgice ., t3 as

to=t, tH=st, bL=¢e%, t3=2ct (7)
and let

9 5,9 40
—=—4te— — 4+ 0O(e* 8
ot ot oy T © at2+8 at; O ®)

The equations to order efis
af 0 af 0 1
L tg L =-—=fd 9
dto t & 0Xj T ¢ ©)
AssumeR, = £2¢ (u). The equation to order af is

i ot | e i— ) O =_Zf@ . 10
oty T( 2f)<8to+e‘” 8Xj> o T @ + ¢(u) ( )

The equation to order af is

af @ 9 3 \of© 1\/ 8 3\°
1-2¢ ) e 2_ 4= ) @
F )( e‘“axj) oty +<T T+6)<Bt +e‘”axj> @

3 9
f<3>+( r)( + €yj o, >¢(u). (11)

Equations (9)—(11) are a so-called series of lattice Boltzmann equations in different ti
scales [9].
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2.3. The wave equation.Taking (9)+ (10) x ¢ and summing about, we obtain

9 /du 92u
—(— ) =c? O(&? 12
8t(8t> S 9% 9% + ¥ (u) + O(e%) (12)
if
D> 1% =0, (13)
Z f;o)eai €j = AUSjj, (14)

wherer = C2/e(r — 1/2), ¥ (u) = (b + 1)¢ (u). Equation (12) has the truncation error
R = O(&?). (15)

To find the structure of the truncation error, we take{gL0) x ¢ + (11) x £2 and get

92u 1\ 3%
—22)\8 T—E +8¢(U)(b+1)

ot 9% 3%
1 au ¢
—22( 2t 2 )AVP— —tef(b+ 1) — 3). 1
£<r r+6> it te“(b+ )at+0(s) (16)
From Eqg. (16), we get the truncation error as
1 au
= —2¢? (r — T+ 6>W2 o e?(b + 1) d’ + O(d). (17)

The truncation erroR contains a dissipation term and an unsteady source term. Therefo
on the second-levekf), the term?,—‘t‘ is dissipative with time.

We can easily get the equilibrium distribution functiéf? from Egs. (2), (13), and (14).
The expression follows

o _ u_ D

18

e (18)
cubD

f;°>=k;‘—cz, «=1...b, (19)

whereD is the dimensional number.

Equations (18) and (19) are a homogenous solution of the system. In the standard Ll
the square lattices with=28 (called an 8-bit) model is used generally. We can use th
b=4,b=6, orb=38 model for the 2D problem. As a simple model, we bse4 for the
2D problem to complete simulation in the numerical experiments of Section 3.

3. NUMERICAL EXAMPLE

To test the effect of this method, we choose three numerical experiments for the o
dimensional model and one numerical experiment for the two-dimensional model.
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We select the lattice sizd, the mesoscopic speed- |e, |, the step ok asAXx, the speed
of wavesCs, and the single relaxation time factoias parameters. The source teryn&!)
in the wave equation are a known condition. Thus, the length of the computing regior
| = MAX; the Knudsen number= Ax/c. The parametex in Eqgs. (18) and (19) is given
by A =C2/e(r — 1/2). The additional tern®2’ in Eq. (3) is given by

ey
Q= .
b+1

The initial conditions of distribution functions are given by Egs. (18) and (19) from tt
macroscopic quantity at timet =t,. Starting from an initialf,,, the macroscopic quantity
g—‘t‘ andu can be obtained using definitions. For each time step, the updating of the distribu
function can be given by using the lattice Boltzmann equation (3). The boundary conditi
of f, are given by Egs. (18) and (19) from the macroscopic quantity boundaries.

Testl,

Ut = C2Uxx + G0, O<X<oo0,t>0

U(X, O) = 07 ut(Xa 0) = 05

andu(0, t) =0, uy(x, t) = 0 whenx — oo. The exact solution is

2
u(x,t):%[tz—(t—§> H(t—%)], t>0,x>0,

whereH (¢) is the Heaviside function.

The results of the lattice Boltzmann simulation and theoretical solution are shown
Fig. 1. The parameters are lattice silb=100, AXx=0.01,c=5.0,7=1.2,Cs=0.1,
0o=0.1, e = At = Ax/cC.

Testll,

unzcszuxx, O<x<1lt=>0
u(x,0) =0, ug(x, 0) =0,
uO,t) =0, Ux (1, t) = do.

u
2
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1.2 —Thecretical Solution|~

1
0.8

0.8 f
&4 T Ls000 it

0.2
0

X

0 Q.2 a4 06 08 1

FIG.1. Comparisons between numerical simulation (circle) and theoretical results (line) of Test . Paramet
lattice sizeM =100,Ax=0.01,c=5.0,7=1.2,Cs=0.1,9y=0.1,¢ = At = AX/C.
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FIG. 2. Comparisons between numerical simulation (circle) and theoretical results (line) of Test Il. Pal
meters: lattice siz& =2000,Ax =0.0005,c=5.0,7 =1.2,C;=0.01,¢9,=0.1, ¢ = At = AX/C.

The exact solution is
1-x 1-—x 1+x 1+x
= — H(t— —(t— Hit—
woe =S| (¢= 25 (t- 27 - (- 250 (- 2)
3—X 3—X 3+ X 3+ X 4
—(t— H(t— t— H(t— , O<t<—.
< C)( cs>+< C>< CH <t=c

The results of the lattice Boltzmann simulation and theoretical solution are shown
Fig. 2. The parameters are lattice shte= 200Q Ax =0.0005 c=5.0, 7 =1.2, Cs=0.01,
0o=0.1, e = At = AXx/cC.

Testlll,
utt:Cguxx, t>0 —0c0<X<o0
0.2
U(X, O) = m, Ut(x, O) =0
The exact solution is
0.1 0.1
ux,t) = (20)

119X —C)2 T 149+ Ca)2

We plot the wave motion at four moments in Figs. 3a—3d. The parameters are lattice
M =1000 Ax=0.01,c=3.0,7=1.2, Cs=0.1, ¢ = At = AXx/c. We find that the single
wave packet evolves into a right-traveling wave packet and a left-traveling wave packet :
the shapes are preserved at all times. We also plot the errors in Fig. 3e at£r860QAt.

We use the functioBa(x, t) = |(u(x, t) — u*(x, t))/u*(x, t)| as the errors, wheng (x, t) is

the exact solution in Eq. (20). Comparing similar examples in Ref. [6], we find three aspe
differing from the LGA model: (1) We use an exact solution of equilibrium distributior
functions Egs. (18), (19) to determine the truncation errors of the scheme; our numer
results are quantity. (2) We do not need an ensemble average to get the macroscopic qué
thus the statistical errors disappear. (3) We use a standard lattice Boltzmann equation
is simpler than the second-order differential type equation in LGA; especially, our moc
can be used to simulate the wave equation with source tegium.
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FIG. 3. (a)-(d) Comparisons between numerical simulation (circle) and theoretical results (line) of Test
Parameters: lattice sizd =1000,Ax =0.01,c=3.0, 7 =1.2,C,=0.1, ¢ = At = Ax/c. (e) The errors curve
verses positiox of Test IIl at timeT = 3000At. Parameters: lattice siad = 1000,Ax =0.01,c=3.0,7 =12,
Cs=0.1,e = At=Ax/c.

T=300 At

40

45

FIG. 4. Contours of quantity at T =300At. Lattice size 64k 64; the slits position cell numbers; =32,
n; =25, my, =32, n, =41, the slits widthAl =6, Ax=1/64, c=3.0, §=5.0, t=1.2, C;=0.1, go=0.1,

&= At = AX/cC.
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FIG. 5. Contours of quantity at T = 1000At. Lattice size 64« 64; the slits position cell numbenrs; =32,
n; =25, my, =32, n, =41, the slits widthAl =6, Ax=1/64,c=3.0, §=20, t=12, C;=0.1, go=0.1,
&= At=AXx/c.

TestlV. As a 2D experiment, we give the results of double-slit at a given instant [6
see Figs. 4, 5. We put a plane wave as the initial condition,

u(x,y, 0) = ggcogsx).

The boundary conditions on the left, right, top, under, and holes arewta@ On two
sides of the wall, we use= 0. At 32 cells away from the left boundary we put a wall with
two holes each with width\l, atni, n, cells away from under the boundary, so that the
wave can go through the holes in order to go from the left region into the right region (\
put this as empty initially). This results in the interference patterns.

4. CONCLUSION

In this paper, we have presented a lattice Boltzmann model for the linear wave equat
Some key points are as follows.

(1) The lattice Boltzmann method is available for the linear wave equation. Becat
the linear wave equation does not have the convention term, its lattice Boltzmann mc
has a feature o}, f 2%, = 0. This is different from the standard LBM in Refs. [1-3].

(2) We used three time scales for recovery of the macroscopic equation. If we wan
know a more detailed structure in the coefficient of dissipation and dispersion, more hig
order moments of thé °9 should be used.

(3) The difference between this model and other lattice Boltzmann models i%that
but notu is the conservation quantity. Test results support the theory.
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